比较两个网络的两样本假设检验是一个重要但困难的问题。主要挑战包括:潜在的不同大小和稀疏度;邻接矩阵的未重复观察;计算可伸缩性;和理论研究,尤其是在有限样本的准确性和最小值最佳方面。在本文中,我们通过比较网络矩提出了第一个可证明的高阶准确的两样本推理方法。我们的方法将经典的两样本t检验扩展到网络设置。我们做出薄弱的建模假设,并可以有效地处理不同大小和稀疏度的网络。我们建立了强大的有限样本理论保证,包括速率 - 优先属性。我们的方法易于实现并快速计算。我们还设计了一个新型的离线哈希和快速查询的非参数框架,特别有效地维护和查询了非常大的网络数据库。我们通过全面的模拟证明了我们方法的有效性。我们将方法应用于两个现实世界数据集,并发现有趣的新颖结构。
translated by 谷歌翻译
车辆网络使车辆能够通过培训数据支持实时车辆应用。由于计算能力有限,车辆通常将数据传输到网络边缘的路边单元(RSU)以处理数据。但是,由于隐私问题,车辆通常不愿彼此共享数据。对于传统的联合学习(FL),车辆在本地训练数据以获取本地模型,然后将本地模型上传到RSU以更新全局模型,因此可以通过共享模型参数而不是数据来保护数据隐私。传统的FL同步更新全局模型,即RSU需要等待所有车辆上传其模型以进行全局模型更新。但是,车辆通常可能会在RSU通过培训获得本地模型之前从覆盖范围中移出,从而降低了全球模型的准确性。有必要提出一个异步联合学习(AFL)来解决此问题,其中RSU一旦从车辆中收到本地模型就会更新全球模型。但是,数据量,计算能力和车辆迁移率可能会影响全球模型的准确性。在本文中,我们共同考虑数据的量,计算功能和车辆移动性,以设计AFL方案以提高全球模型的准确性。广泛的仿真实验表明,我们的方案优于FL方案
translated by 谷歌翻译
车辆边缘计算(VEC)可以在网络边缘的不同RSU中缓存内容,以支持实时车辆应用。在VEC中,由于车辆的高运动特性,有必要提前缓存用户数据,并为车辆用户学习最流行和最有趣的内容。由于用户数据通常包含隐私信息,因此用户不愿与他人共享其数据。为了解决这个问题,传统的联合学习(FL)需要通过汇总所有用户的本地模型来保护用户的隐私来同步更新全局模型。但是,车辆可能会在实现本地模型培训之前经常离开VEC的覆盖范围,因此无法按预期上传本地型号,这将降低全球模型的准确性。此外,本地RSU的缓存能力有限,流行内容是多样的,因此预测的流行内容的大小通常超过本地RSU的缓存能力。因此,在考虑内容传输延迟的同时,VEC应在不同的RSU中缓存预测的流行内容。在本文中,我们考虑了车辆的流动性,并提出了基于联合和深度强化学习(CAFR)的VEC中的合作缓存计划。我们首先考虑车辆的移动性,并提出异步FL算法以获得准确的全局模型,然后提出一种算法来预测基于全球模型的流行内容。此外,我们考虑了车辆的移动性,并提出了深入的强化学习算法,以获取预测流行内容的最佳合作缓存位置,以优化内容传输延迟。广泛的实验结果表明,CAFR方案的表现优于其他基线缓存方案。
translated by 谷歌翻译
这项工作旨在使用带有动作查询的编码器框架(类似于DETR)来推进时间动作检测(TAD),该框架在对象检测中表现出了巨大的成功。但是,如果直接应用于TAD,该框架遇到了几个问题:解码器中争论之间关系的探索不足,由于培训样本数量有限,分类培训不足以及推断时不可靠的分类得分。为此,我们首先提出了解码器中的关系注意机制,该机制根据其关系来指导查询之间的注意力。此外,我们提出了两项​​损失,以促进和稳定行动分类的培训。最后,我们建议在推理时预测每个动作查询的本地化质量,以区分高质量的查询。所提出的命名React的方法在Thumos14上实现了最新性能,其计算成本比以前的方法低得多。此外,还进行了广泛的消融研究,以验证每个提出的组件的有效性。该代码可在https://github.com/sssste/reaeact上获得。
translated by 谷歌翻译
跨模式检索引起了计算机视觉和自然语言处理域的广泛关注。随着卷积和经常性神经网络的发展,跨图像文本模态的检索瓶颈不再是图像和文本特征的提取,而是嵌入空间中有效的损失函数学习。许多损失函数试图从异质方式中更接近成对特征。本文提出了一种使用模式内约束损耗函数学习图像和文本的联合嵌入的方法,以减少从相同均匀模态中违反负面对的侵犯。实验结果表明,我们的方法优于FlickR30K和Microsoft Coco数据集的最先进的双向图像检索方法。我们的代码公开可用:https://github.com/canonchen/imc。
translated by 谷歌翻译
仅使用图像级标签的弱监督语义细分旨在降低分割任务的注释成本。现有方法通常利用类激活图(CAM)来定位伪标签生成的对象区域。但是,凸轮只能发现对象的最歧视部分,从而导致下像素级伪标签。为了解决这个问题,我们提出了一个限制的显着性和内类关系的显着性(I $^2 $ CRC)框架,以协助CAM中激活的对象区域的扩展。具体而言,我们提出了一个显着性指导的类不足的距离模块,以通过将特征对准其类原型来更接近类别内特征。此外,我们提出了一个特定的距离模块,以将类间特征推开,并鼓励对象区域的激活高于背景。除了加强分类网络激活CAM中更多积分对象区域的能力外,我们还引入了一个对象引导的标签细化模块,以完全利用分割预测和初始标签,以获取出色的伪标签。 Pascal VOC 2012和可可数据集的广泛实验很好地证明了I $^2 $ CRC的有效性,而不是其他最先进的对应物。源代码,模型和数据已在\ url {https://github.com/nust-machine-intelligence-laboratory/i2crc}提供。
translated by 谷歌翻译
本文提出了一种基于以评估患者的肺的条件与COVID-19肺炎,以及严重的区分/和在肺超声(LUS)图像,所述特定的图像图案的定量表征半自动系统无重症病例。具体而言,四个参数从每个LUS图像中提取,即厚度(TPL)和粗糙度的胸膜线的(RPL),并用乙线(AWBL)和声学系数(ACBL)的累积。 27名患者被纳入本研究,并分成13名中度患者,7名重症患者和7名危重病人。此外,重型,危重病人被视为严重的情况下,以及适度的患者被视为无重症病例。不同群体之间的生物标志物进行比较。每个单个生物标志物和与所有生物标记物作为输入的分类器被用于分别严重的情况和非严重情况下,二进制诊断。分类器实现了所有被比较的方法中最好的分类性能(受试者工作特征曲线= 0.93下的面积,灵敏度= 0.93,特异性= 0.85)。所提出的图像分析系统,可以潜在地适用于患者的分级和预后评估与COVID-19的肺炎。
translated by 谷歌翻译
信息技术的进步导致了非常大的数据集,通常保存在不同的存储中心。必须适于现有的统计方法来克服所产生的计算障碍,同时保持统计有效性和效率。分裂和征服方法已应用于许多领域,包括分位式流程,回归分析,主偶数和指数家庭。我们研究了有限高斯混合的分布式学习的分裂和征服方法。我们建议减少策略并开发一种有效的MM算法。新估计器显示在某些一般条件下保持一致并保留根 - N一致性。基于模拟和现实世界数据的实验表明,如果后者是可行的,所提出的分离和征管方法具有基于完整数据集的全球估计的统计性能。如果模型假设与真实数据不匹配,甚至可以略高于全局估算器。它还具有比某些现有方法更好的统计和计算性能。
translated by 谷歌翻译
高斯混合还原(GMR)是通过较低订单近似高阶高斯混合物的问题。它广泛用于隐藏马尔可夫模型中的密度估计,递归跟踪和信念传播。在这项工作中,我们表明GMR可以作为优化问题,最小化两个混合物之间的复合输送分流(CTD)。优化问题可以通过易于实现的大多数 - 最小化(MM)算法来解决。我们表明MM算法在一般条件下收敛。 GMR的一种流行的计算有效方法是基于聚类的迭代算法。然而,这些算法缺乏理论保证它们是否在他们何时收敛或获得一些最佳目标。我们表明,现有的基于聚类的算法是我们MM算法的特殊情况,因此可以建立其理论属性。我们进一步示出了通过在CTD中选择各种成本函数,可以进一步提高基于聚类的算法的性能。进行数值实验以说明我们所提出的延伸的有效性。
translated by 谷歌翻译
In subcellular biological research, fluorescence staining is a key technique to reveal the locations and morphology of subcellular structures. However, fluorescence staining is slow, expensive, and harmful to cells. In this paper, we treat it as a deep learning task termed subcellular structure prediction (SSP), aiming to predict the 3D fluorescent images of multiple subcellular structures from a 3D transmitted-light image. Unfortunately, due to the limitations of current biotechnology, each image is partially labeled in SSP. Besides, naturally, the subcellular structures vary considerably in size, which causes the multi-scale issue in SSP. However, traditional solutions can not address SSP well since they organize network parameters inefficiently and inflexibly. To overcome these challenges, we propose Re-parameterizing Mixture-of-Diverse-Experts (RepMode), a network that dynamically organizes its parameters with task-aware priors to handle specified single-label prediction tasks of SSP. In RepMode, the Mixture-of-Diverse-Experts (MoDE) block is designed to learn the generalized parameters for all tasks, and gating re-parameterization (GatRep) is performed to generate the specialized parameters for each task, by which RepMode can maintain a compact practical topology exactly like a plain network, and meanwhile achieves a powerful theoretical topology. Comprehensive experiments show that RepMode outperforms existing methods on ten of twelve prediction tasks of SSP and achieves state-of-the-art overall performance.
translated by 谷歌翻译